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Abstract-The effects of shearing on the emergence of bifurcation modes during the rolling of clad
metals are studied. Previous studies of bifurcation modes in layered solids assumed that rolling
could be modeled as a simple. homogeneous compression. with zero shear stress acting parallel to
the layers. This clearly ignores friction which is necessarily present between the sheets and the rolls.
In this paper. two new prebifurcation states. each reminiscent of a different type of shearing that
occurs in rolled clad metals. are considered; their tendencies to provoke bifurcation modes are
contrasted with previous predictions based on frictionless compression. As the governing differential
equation for incremental deformations is substantially more comple~ than before. a numerical
approach is devised to compute the bifurcation strains. The results of this approach. which are
shown to be e~tremely accurate by comparison with previously obtained results. indicate that
appro~lmating rolling as a homogeneous. frictionless compression may lead to substantial errors.

I. INTRODUCTION

During the process of roll-bonding clad metals (illustrated schematically in Fig. I). and
during the rolling of already bonded clads. there occasionally occurs a spatially periodic
variation in the thickness of individual layers. While this variation may be so slight as to
be unnoticeable. it can also be so extreme as to cause an inner layer to break through the
cladding. The periodic stripes of core material penetrating the cladding arc sometimes
referred to as tiger bands. In Fig. 2 we show this layer thickness variation. as observed by
Semiatin and Pichler (1979). in an already bonded stainless steel clad aluminum subjected
to rolling. This phenomenon. which can be highly detrimental to the final properties of the
clad. is still poorly understood. The ability to predict the onset and development of layer
thickness variations would have a positive impact on the processing of clad metals.

Recently. a bifurcation model for the appearance of tiger bands during rolling has
been presented by the author (Steif. 1987, 1990). In Steif(1987), rolling was idealized as a
homogeneous, plane strain compression, and the strain at which a periodic deformation
pattern akin to tiger banding can exist was calculated. With a view to understanding
tiger banding during roll bonding. Steif (1990) reconsidered this problem. but relaxed the
condition of tangential velocity continuity between the layers. This retlects the fact that the
various sheets entering the bonding mill are not bonded to one another; the ease of slippage
would depend on the inter-layer friction which was taken to be zero. The reductions at
which tiger banding is possible were found to be substantially lower when tangential slippage
is permitted.

A

Fig. I. Schematic of roll bonding.
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The present paper i~ in the spirit ofSteif (1990/ in that it attempts to test the sensiti"it:
of the predicted bifurcation strains to certain idealiLations v~hich may be at odds with
n:ality. In particular. ~e will examine how the presence of shear stresses parallel to the
interface atfects predictions for the onset of tiger banding. Both previous attempts by the
authl~r to model the emergence of thickness variations assumed that rolling can be viewed
as a plane strain compression which is imr\.~sed by rigid. frictionless platens. This simple
homogeneous prebifurcation state is an idealization for two reasons. First. when the sheets
are not symmetric about the center line between the rolls. or when the rolls are driven at
ditferent speeds. there are likely to be shear stresses acting parallel to the interl~\ce. in
addition to the compression and tension that have been considered thus far. In order to
simulate this shear stress. we will consider a prebifurcation state which has a homogeneous
shear stress superposed on the simple compression.

Secondly. even when bonding a symmetric clad. the friction at the rolls induces shear
stresses; these stresses are anti-symmetric about the center line. attaining a maximum
value at the rolls. Below. we will present a prebifurcation stress state which reRects the
inhomogeneous shearing to be found when rolling a symmetric clad. To appreciate this
stress state. some historical background is necessary. von Karman's (1925) pioneering one
dimensional analysis of sheet rolling pointed out the significant role played by friction
when the rolls draw a sheet in at the entrance and then resist the sheet's leaving at the exit.
However. the earliest r\.)lIing analyses assumed that the deformation is homogeneous in
each cf(w;-section along the roll arc (the so-called slab method). and that the yielding is
independellt of the shear stress. The severcl: inhomogeneous state of strain that exists in
reality is illustrated nllht vividly in a c1as,ic paper b: Orowan (19·U). in which. among
other things. he presents a photograph of a ,lab of plasticine. containing alternating dark
and light layers. which was rolled with high friction.

While Orowan (1\.)4:1) did not present a rolling analysis which accounts for the highly
inhomogel1l:ous strain state that he observed in the plasticine. he did suggest a stress state
which is somewhat more realistic than the uniform deformation of the slab method. Orowan
appealed to Prandtl's (1923) plane strain solution for a very long. thin. perfectly plastic
slab which is compressnl between two rigid. rtJll.I/h platens (sec Fig. :la). In Prandtl's
solution. which is valid away from the central part of the slab where the material would
remain elastic. the shear stress varies linearly aCross the thickness and reaches the shear
Ilow stress at the platens. This allows relative motion hetween the slah and the rough platen.
as the curved slip lines an: tangential to the slab -platen intert~lee. Orowan (ILJ-l3) suggested
that the shear stresses acting on a rolled sheet arc essentially the same as those acting on
the compressed slah (compare Figs 3a and 3h). except for the curvature associated with
the rolls. Below. we will show how the Prandtl -Orowan solution can he extended to a
symmetrically layered solid. This new solution. which is only approximate for a hardening
material. will constitute the prehifurcation field which rdkets the shearing which is inherent
in the rolling process.

In Section 2. we set forth the prebifun:ation fields to he considered. including a
bimaterial version of Prandtl's compressed slab solution. Section 3 contains a derivation of
the e4uations for incremental deformations at tinite strain which arc appropriate to the
present prohlem featuring a particular class of inhomogeneous prehifurcation states. In
Section 4. the hifurcation prohlem is posed and the forms of the eigenmodes arc discussed.
A highly accurate numerical scheme for determining the eigenstrains (reductions at which
tiger banding is possihlc) is presented in Section 5. The results are presented and discussed
in Section 6. followed hy a summary and conclusions in Section 7.

2. PREBIFURCATlO:" STATES

In this section we present the two prebifurcation states to be considered in the study
of the effect of shearing on the emergence of tiger bands. The first state is intended to
capture the shearing which is associated with rolling an unsymmetric set of layers. or which
would arise from driving the rolls at different speeds. It consists of the homogeneous
compressive stress normal to the sheets considered in previous work. on which we superpose
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Fig. 3a. Prandtl problem of a thin slab compressed between rough platens.
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Fig. 3b. Shear stresses during rolling.

a uniform shear stress. The finite strain solution for combined compression and shear is
now presented for a layered solid in which the individual materials are incompressible.
and arc characterized by an isotropic. hyperclastic. J~-dcrormation theory of pl.lsticity
(llutchinson and Neale. 197X). In Section 3. this choice of material law will be justified.

1\ three-Iayen:d solid to he subjected to extension and shear is shown schematically in
Fig. 4. For an incompressible material deforming in plane strain. three parameters define
the kinematics of this piece-wise constant deformation: I;. the logarithmic strain in the
horizontal direction (equal to the same value in all layers) : YA' the shear strain angle in A:
and i'll' the shear strain angle in B. This combination of strains ensures compatibility of
deformations. ami would be appropriate for any stacking sequence involving layers of two
materials A .lIld B. Note that the three parameters I:. YA and III are not independent. In
particular. we imagine the loading to be described by /; and I A: III is determined by the
condition that the shear stn:ss is continuous across the interface.

For a solid subjected to an extension /; and a shear I. the principal stretches are given
by

;'1 = cosh 1/:+!/ + Jsinh~ 21;+y!~~~h2e+ f?
;.~ = cosh 2e+!/ - Jsinh~ 2t:+/ cosh 2c+ hoi.

(I a)

(I b)

These stretches preserve incompressibility in that ;., ;.~ = 1. From the stretches. one can
find the logarithmic strains

Fig. ~. Symmelrically clad. three-layer solid subjccled to clItension and shearing.
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(2a.b)

The J 1-deformation theory of plasticity takes the principal Cauchy stress difference
CT 1- CT 1 to be related to the principal strain difference according to

(3)

where E, is the secant modulus.
[n terms of e and y. the principal directions are at angles O· and O· +Ttl2 from the x I

axis. where 0* satisfies

ye-<
sin 20· = (4)

Jsinh2 2e+y2 cosh 2e+ h 4

By combining (I )-(4) and the usual transformation formulae for stress components.
one can find the shear stress component CT 12. which must be continuous across the interface.
Equating the expressions for CT 12 in A and B leads to a single equation for Y8. in terms of
the strains e and }'A. and material parameters in A and B (which determine E, in A and B).
The remaining quantities required for the bifurcation analysis can be readily derived.

Now. we present the prebifurcation stress state which is intended to mimic the shearing
which is inherent in the rolling process. even in ideally symmetric rolling. We consider the
problem of a symmetric laminate of three sheets. which are compressed by rough. rigid
platens (see Fig. 5). For now. we assume that all sheets are rigid, perfectly plastic; the outer
sheets have a plane strain tensile yield stress CT8' and the inner sheet has a plane strain tensile
yield stress CT", Of interest arc solutions in which all layers are deforming. and for which
the deviatoric stresses an: independent of the coordinate x,. Our solution to this problem
is motivated by Prandtl's (1923) solution to the single-layer problem (Fig. 3a) which is
given by

(
XICTV)- c+--

2b

(Sa)

(Sb)

(5c)

where CTv is the yield stress of the layer. c is any constant, and the layer has a thickness 2h.
This solution presumes that the platens are sutficiently rough to sustain a shear stress equal
to the shear yield stress of the material !CTv. The curved slip lines are tangential to the
platen-metal interface; thus, relative motion can occur along this interface. Note that this
solution is valid in the left portion of the sheet, away from the center (where the layer would
not be yielding plastically) and away from the ends (where end-effects will be significant).

Orowan (1943) took the Prandtl (1923) solution and used it to include the effect of the
shear streSS on the yield condition at some point along the roIl arc. Let CT denote the average
tensile stress CT II at a given cross-section. and let p denote the roll pressure ( - CT11)' Instead
of the equation

Fig. 5. Definilion of coordinates and dimensions in symmetrically clad. three·layer solid.
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(1+P = (1y (6)

which is commonly used in rolling analyses. and which is a reasonable approximation for
low shear stresses at the rolls. Orowan proposed the following equation:

1t
(1+P = 4(1y. (7)

This was obtained from the Prandtl solution by integrating over the cross-section. Clearly.
this approximation is most appropriate when the roll friction is very high.

For moderate levels of friction. Orowan utilized the stress distribution

(8a)

(8b)

(Sc)

where he interpreted the spatially constant shear stress at the platen-metal interface. rp • to
be equal to a Coulomb friction coetlicient times the pressure. From this. one finds a yield
condition which is somewhere between (6) and (7). depending on where rp lies along the
interval 0 ~ r p ~ !(1y. Orowan immediately recognized that this solution is not strictly valid
over any finite extent of the compressed strip, as the interfacial shear stress is constant.
while the pressure varies linearly with x I' Nevertheless. given all the approximations in these
one-dimensional theories for rolling. the distribution seems to be ,I useful approximation.

It is relatively straightforward to take the Prandtl and Orowan solutions for the single
layer problem and generate the following one-parameter family of solutions to the three
layer problem:

in A:

(9a)

(9b)

(9c)

in B:

(9d)

(ge)

(9f)

where the parameter m is a positive constant. These solutions satisfy the equilibrium
equations and the yield condition in each of A and B. as well as continuity of traction at
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the interfaces between the layers. In addition. one can show that the corresponding strain
fields are derivable from velocities which are continuous at the interface. For m = I. the
shear stress in B at the platens is equal to the shear yield stress 10'8. which allows B to slip
relative to the rough. rigid platens. Note that when m = I and 0'A = 0'0 = O'y. this solution
reverts to the original Prandtl solution (5). An obvious feature of eqns (9). and one that is
crucial to a reinterpretation introduced below. is that the Von Mises invariant is constant
in each of A and B and equal. of course. to the respective yield strengths.

Introducing the family of solutions parameterized by m serves the same purpose as
does Orowan's generalization of the Prandtl solution. The specific case ofm = I corresponds
to a shear stress in material B at the platen which is equal to the shear yield stress 10'0:

when the platens are insufficiently rough to sustain this shear stress. m will be less than I.
There is a second restriction on m. in addition to the obvious one of m ~ I : the solution is
valid only if m < m*. where m* is defined by

* 0'.\ b
111 = - '-.

0'0 a
(10)

This value m*. which can be greater than or h:ss than one. corresponds to a shear stress at
the A-B interface which is equal to the shear yield stress of A. Any higher value ofm would
violate yield in material A. When 11/ ~ 11/* < I, the platens may be too rough to allow
slippage of material B. We ignore this possibility and assume that the platen-metal interl~lce

is such that the stress state given by (9) is permitted to exist over the range 0 ~ m ~ mer.
where m", is the minimum of 11/* and I. and that layer B is allowed to slip relative to the
platen at this level of shear stress.

The materials of interest to the bifurcation studies. however. are not perfectly plastic;
the hardening rates in A and B arc consistently found to be crucial parameters in bifun:ation
amllyses. To make the necessary leap to hardening materials. we simply follow Orowan's
approach to rolling by rcilllaprelilly the stress lields in (9) as pertaining to hardening
materials. Obviously. at a minimum. we must adopt a plasticity theory in which the yield
stress is a function of the Von Mises invariant. such as Jrdcformation theory. Since. as
was pointed out above. the Von Mises invariant is constant in eal:h of A and B. the l:urrent
level of the l10w stress is constant in C<ll:h of A and B. The l10w stresses change. however,
as the sheets arc compressed; that is, (11\ and (11\ arc funl:tions of the remote loading (as
detailed below), but at any instant they are spatially constant. Unfortunately. this is not a
rigorous solution to the problem when the materials harden; while mechanil:al equilibrium
is satisfied. the ctfective strain (analogous to the Von Mises invariant of the stresses) will
not be constant spatially and is, thus, incompatible with the assumption of a yield stress
that remains spatially constant.

Nevertheless, we will usc this field as the prebifurcation state, and we justify its use by
appealing to the major purpose of this investigation: to assess the sensitivity of predictions
of tiger banding to deviations from the previously assumed prebifurcation state of homo
geneous. frictionless compression. It is presumed that this bimaterial generalization of the
Prandtl field. despite its approximate nature for hardening materials. will provide useful,
qualitative insight into the sensitivity of bifurcation predictions to the shear stresses associ
ated with the friction inherent in rolling. [n employing this ficld. we are assuming that the
proper level of shear stress is provided at the platen-metal interface. and that it is uniform
III XI'

J FIELD EQUATIONS

In this section a brief review is given of the relevant field equations for solids deformed
into the finite strain range. We introduce the nominal stress with components n,j. and the
Cauchy (true) stress 0'". where all components are taken with respect to a fixed Clrtesian
frame. As is typical in bifurcation analyses. the reference configuration is taken to coincide
instantaneously with the current configuration. Then. the material time derivative of
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(II)

where the summation convention on repeated indices is assumed. ( L denotes a partial
derivative with respect to the spatial variable x,. n,) is the material time derivative of nlJ" &"
denotes the (objective) Jaumann derivative of the Cauchy stress. and t', are the velocity
components. Below. it will be assumed that the strain-rates are related to the Jaumann rate
of the Cauchy stress. Continuing mechanical equilibrium is readily expressed in terms of
the nominal stress-rate by

n,}., = O. ( 12)

We now specialize these equations to an incompressible solid deforming in the XI-X!

plane. Incompressibility implies that the velocities are derivable from a scalar stream
function X(.~I'X!) according to

1'1 = X.! I'! = -X.I· (13a. b)

Following Hill and Hutchinson (1975). we write the two relevant equilibrium equations
in the following form which is useful for incompressible materials:

~(,ill -,iH).1 +,i!l.! = - !Crill +n!!).,

l(,i I I -,i!!).! -,i I !.I = !(,i I I + ri!!).!.

(14a)

(14b)

At this point. we justify the constitutive law introduced in Section 2. First. as was
explained above. a reinterpretation of the stress state (9) as pertaining to hardening materials
requires the material law to be based on the Von Misl.os or J! invariant. In choosing Jrdefor
mation theory. we appeal to the long-standing uppreciation thut the particulur choice of
hardening rule has serious consequences for bifurcation predictions, such as buckling und
necking (Hutchinson. IlJ74). In purticular, a plasticity theory based on a smooth yield
surface. which implies a still' (clastic) response to non-proportional stress increments,
consistently leads to very high predictions of bifurcation strains. On the other hand. when
a deformation plasticity theory is used, or when the yield surface has a vertex. bifurcation
predictions are lower and more reasonable. Consistent with this experience. therefore. we
take the material to be described by Jrdeformation theory. This is convenient in that the
limit ofm ..... 0 in (9) corresponds to a uniform, frictionless eompression- the prebifurcation
state previously studied (Steil', 1987, 1990); thus, this limiting case can readily provide a
test of the numerical technique which is introduced in Section 5.

In the case of plane strain deformations. J !-deformation theory connects the com
ponents of the Jaumann stress-rate to the strain-rates according to the relation

(15)

where J,} is the Kronecker delta, Em is a modified secant modulus defined below. and p is
the hydrostatic pressure-rate. The tangent modulus. Et • depends on J!. which is given by

( 16)

where the Cauchy stress deviator s". is defined. as usual, by

(17)

It is equivalent to viewing the moduli as functions of the effective stress, (1eo which is
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relate:d to J: by a; = 3J:- Then, as is usually done in J :-based plasticity theories, the tangent
modulus for a given value of effective stress is obtained from the stress-strain curve
measured in unia:<ial te:nsion.

In particular, we use (as in previous work) the hyperelastic J:-deformation theory of
Hutchinson and Neale (1978), in which case the modified secant modulus Em is given by

( 18)

where E, is the: actual secant modulus (defined from the uniaxial stress-strain curve).
By combining eqns (II )-( 15), and the strain-rate velocity relation

( 19)

one can derive an extremely lengthy differential equation for the stream function X. For
our purposes. however, a special case of this very general equation suffices. Consideration
of the two prebifurcation states presented in Section 2 indicates that, while the stresses may
vary from point to point (they do in the bimaterial Prandtl-Orowan solution). the effective
stress is always piece-wise constant; this implies that the secant and tangent moduli are
piece-wise constant. Assuming, then, that the moduli are spatially constant, one can derive
the following governing equation for the stream function X:

[\Ern -I$rd: + S I alX.1111 + [{Em + fl(2ai 2 -45L »)X,1122 + [\E111 -/~ai 2 -51 alX.:m

+ [4/$(11:·\'11 + '2O'I:JX.III: + [-4{/(11:·\·11 +20'dx.2221

+[2/1«(11 :'\'11,: +5 11 0'1U - 2a 120'12.d -O'ndX.111

+ [ - '2{J«(1 12.\'11.1 +5110' 1:.1 + 20'1:(1 Iu) -0' I u1x.222

+ [2{/( 3(1 I:'\'1 I. I + 3.\'1 IiTl :.1 + 2iT i 20' I:.! - 45 11,2.1' I I) + 30' I:. dX.1 12

+ [-21/(JrT l :51 U + 35 11 a 1U - 2a l:al:.1 + 45 11.1.\'11) +3a l2.2]X,122

+ [2{/(,\'llrT 12,1: + a 12.2«(1 12.2 +.\'11.1) - a 12.1 (a 12.1 -5 11.2) - a 12·\'11.12) + !(O'I 1,22 - a22.1 "]X.II

+ [ - 2{I(5 11 0' 12,12 + a 12,2(a 12.2 +SII, d -0' 12.1 (a I 2.1 -SII.2) -0' 12.1'11.12) + !(0'22,11 -0' 11.22)]X.22

+ [ - 2/1(2.\'11 5 11.12 + a 12(511,22 -511.1 d + 2.1'11,2(0' 12.2 +.1'11.1)

(20)

where II is given by

{f = Em -, E, .
0"c

Also of interest are the traction-rates fi 21 and fi nl • which are given by

li 21 = [- ~£m + {JO'T: + !(O' II +O'd]x.1I + [iEm -{JO'T: -5 11 )JX.22 + [ - 2{fa 125 11 + 0' 12JX.12

(2Ia)

-1i: 2. 1 = [2{fa 12.1'11 + a I:1X.III + [Em + {f(ai2 - 45; I) - !(a II + (22)]X.112

+ [ -4{/a 12511 + 2a 12]X.122 + [iEm - {Jai2 -51 dX.222

+ [2j1(aI2.1'11.I +a I2.I.I'11 +0'12.20'12) +51 U]X.II

+ [ - 2j1(0' /2511.1 + 0' 12.1.1'11 +0'12.: a 12) - !(a II + (22).2]X.::

+ [- 2fJ(0' 12.1'11,2 + a12.2.1'11 +4.1'11.1'11. d - (2a ll +0'22). alX.12· (21 b)
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(Note that the spatial derivative of fizz allows for the hydrostatic pressure-rate to be
eliminated. )

In applying eqns (20) and (21) to an incremental bifurcation problem. the stresses and
incremental moduli are those associated with the prebifurcation state. For the prebifurcation
state consisting of a homogeneous shear stress superposed on the compression. the stresses
are derivable from E. i'A and i'8, as discussed above. From these stresses. one can compute
the effective stress. and then the moduli from the uniaxial stress-strain curve. For the case
of the modified Prandtl-Orowan solution. we view the prebifurcation state as parameterized
by a fictitious uniform thickness strain. From this fictitious strain, given by Ell = - E~~ > 0,
EIZ = 0 (E,) equal in both layers). we compute the effective stress in each layer from the
respective stress-strain curves. as well as the respective moduli. It is the effective stresses
which are the quantities O"A. and 0"8 that appear in (9). This uniform thickness strain is
fictitious since the modified Prandtl-Orowan solution is only approximate; as discussed in
Section 2. the evolving strain cannot really be uniform. Nevertheless, this approximate.
though perhaps reasonable. approach has the feature that it reduces precisely to the homo
geneous. frictionless compression considered previously in the limit of m -+ O.

4. BIFURCATION MODES

In this section. we specify the two types of bifurcation modes which arc of interest in
connection with layer thickness variations. The anti-symmetric mode involves deformation
of the core (material A) which is anti-symmetric about its centerline; that is

(22)

The symmetril: mode involves deformation of the l:orc that is symmetril: about its centerline;
that is

(23)

Once either of these modes develops sutliciently. it can lead to periodic fracture of the
dadding. as exhibited in the rolling of an already bonded stainless steel clad aluminum
(depil:ted in Fig. 2). Previously, Steif (1987) predicted that the anti-symmetric mode (exhi
bited by the sample in Fig. 2) would emerge first (at a lower reduction) when the cladding
is rdativdy thin and hard; the symmetric mode was predil:ted to t:merge first when the core
is rdatively thin and hard. One issue of interest here is the etfect of friction on the selection
of bifurcation mode.

Given this decomposition into symmetric and anti-symmetric modes, wt: can restrict
the field equations to the domain 0 < x: < h, though we need to impose the boundary
conditions

X.:(XI.O) = X.~2Z(XI'0) = 0 (anti-symmetric mode)

X(.\"I.Oj = X.2Z(X 1.O) = 0 (symmetric mode).

We search for periodic eigenmodes which take the form

in A. and

(2441)

(24b)

(2541)

(25b)

in B. where 27t/(I) is the wavelength of the mode. Inserting the forms (25) into the field eqn
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(20). and colkcting terms proportional to sin (l)X I and cos UJX 1• one obtains two coupled.
fourth-order. ordinary differential equations for !(xJ and qlx:). which we write sym
bolically in the form

Y,{/g: =0

!fI, [f.g} = O.

(26a)

(26b)

Previously. when rolling was idealized as a homogeneous. frictionless compression. it was
sufficient to search for eigenmodes proportional only to. say. sin WX I. The corresponding
calculation for eigenmodes proportional to cos WX I would yield identical results. These
modes become coupled [as can be seen from (20)]. once there is shearing.

It may not be readily apparent that eigenmodes can be found in the separable form
(25); why should the ordinary differential equations (26) be independent of x I? Whether
they are independent of XI is clearly tied to the form of the prebifurcation states. For the
prebifurcation state consisting of a homogeneous shear stress superposed on the homo
geneous compression. all field quantities are piece-wise constant; in particular they are
independent of XI' On the other hand. the stresses in the bimaterial Prandtl-Orowan
solution do vary spatially. Notice. however. that the deviatoric stresses (and the moduli)
are independent of XI and that the hydrostatic pressure varies linearly with XI' Together.
these imply that (26) will be independent of XI'

In addition to satisfying (26). the eigenmodes must satisfy various boundary condi
tions. In particular. (24) imply the following two conditions on each off(x~) and .1J(x:):

f' (0) = g' (0) = l" (0) = g' (0) = 0 (anti-symnll:tric mode)

f'(O) = g'(O) = /'(0) = g' (0) = 0 (symmetric mode)

(27a)

(27b)

where ( )' dl:/llltl:s a derivativl: with respect to x~.

At thl: rigid platl:n (x ~ = Il). thl: l:igl:nnHllks are requirl:d to satisfy Zl:ro normal velocity
and Il:ro shear traction-rall:. Whik these boundary conditions arl: perfcctly consistl:nt with
thl: previous modd of rolling as a honHlgeneous comprl:ssion induced by frictionkss platl:ns.
the assumption of a vanishing shear traction-mte is less satisfying here when the prl:
bifurcation field itself katures non-zero shl:ar stresses at the platen-metal interface. In
reality. one expects there to be some change in the shear stress as incremental interfacial
slippage occurs. Though this she.tr traction-rate is neglected at present. its clrel:t probably
should be investigated in the future.

Finally. the eigenmodes must satisfy certain continuity wnditions at the interfal:e
x~ = a. This includes continuity oftra..:tion-rate. as well as wntinuity ofvelm:ities. Although
interfacial slippage-a diswntinuity in the tangential velocity component-is not permitted
here. it is readily included. as it was in Steil' (1990). Two pairs of velocity l:ontinuity
conditions. one corresponding to sin WXI. and one corresponding to cos UJX 1• arc obtained
from (13). Similarly. from the expressions for traction-rates given in (21). one l:an obtain
two pairs of traction-rate continuity conditions.

5. NUMERICAL APPROACH TO BIFURCATION CALCULATlO:-;

The numerical approach taken to solving the class of bifurcation problems outlined
above is perhaps best explained by contrast to the primarily analytic approach taken in
past studies of layer bifun:ation problems. In previous bifurcation studies (Steil'. 1987.
1990). it was possible to find closed form solutions to the governing homogeneolls. fourth
order di/ferential eljuation for f(x~). in each of A and B. in terms of four simple functions.
For example f'(x:) could be written in the form

(28)

where the functions /,,'(x:) (j = I. .... 4) arc simple functions (combinations of trig-
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onometric and hyperbolic functions). and cJ are constant coefficients. Identical forms can
be found for the functions in B. Using the homogeneous boundary conditions at Xz = 0 and
Xz = b. one can immediately eliminate half of the undetermined coefficients. Imposing the
homogeneous continuity conditions at the interface leads to a set of four homogeneous
linear equations for the remaining coefficients. The terms in the associated matrix depend
nonlinearly on the applied strain and on the material parameters. but can be expressed in
closed form. The bifurcation strain. which corresponds to the lowest strain at which there
exists a non-trivial solution to the equations. was found by setting the determinant (which
is calculated numerically) equal to zero. Here. with the governing differential equations
substantially more complicated. obtaining closed form homogeneous solutions is prohibi
tive. Hence. a numerical approach was sought.

To state the previous approach in a different way: we considered the space of functions
which satisfy the governing homogeneous differential equation. and we searched for func
tions in this space which satisfy the homogeneous boundary conditions at X2 = 0 and
Xz = b. and the homogeneous continuity conditions at Xz = a. The basis for this space of
functions consists of the closed form. linearly independent. homogeneous solutions [i.e.
f~(.~z)l to the governing differential equation. Any function within this space is identified,
or parameterized. by the values of coefficients Cj' Though closed form solutions can no
longer be found for the governing differential equations when the prebifurcation stress state
is inhomogeneous. we can take advantage of the linearity (26) to establish a basis for the
space of functions to be searched.

L I b . I' . . {Cf'~(x~)} . I'" 8) b d f' d' h d .ct t lC aSls unctIOn pairs ./,/\ U = . _. . . .. e e lOe 10 t e omalO
'YI(X~)

0< X; < (/ and satisfy the governing eqns (20). where cf'~(xJ is associated with f(x~). and
,/I;' (x:) is associated with y(x ~). Now. each of the function pairs satisfies dilli:rent initial
conditions at X: = 0; specifically.

tf"~(O)} f} tf'~' (0) } tf"~' (0) } tf"~ ,:(O)}={'>}
IV~(O) = 0 I/I~' (0) = 'V~ (0) = '/J'~ (0) 0

tf'~ (O)} f} {cp'l(O)} = tf"~'(O)} = {Cf'~',(O)} = {O}
I/J'~ (0) = 0 1/1~(O) ,g (0) rjI~ (0) 0

tf"~ (o)} f} {cP~(O)} tpno)} t P1 '(O)} {O}
'V~'(O) = 0 I/J'W» = rjI'~ (0) = ,/11" (0) = 0

t P1 (O)} = {I} t P1 (0)} t P1 (0)} t P1 (0)} {O}1/11 (0) 0 '/11(0) = rjl1' (0) = '/11'(0) = 0

tp'~(O)} = {a} {cP'~(O)} = tp~,:(O)} = {cp'r::(o)} = {O}
rjI~(oJ t '/1~ (0) rjI'~ (0) rjI'~ (0) °

{cpZ(O)} = {O} tPZ(OJ} = {cp~(O)} = tp~:(O)} = {O}
rjI'~ (0) I rjI~(O) rjlZ (0) rjlZ (0) 0

{~;~~~} = {~} {cp~(O)} = tp'~' (O)} = {cp~':: (O)} = {O}
rjI~ (0) rjI~ (0) rjI~ (0) 0

{cp~,'(O)} = {O} {cp~(O)} {cp:~(O)} fpr(O)} {O}
(29)

rjI~ (0) t rjI~ (0) = rjI:~ (0) = rjI'~' (0) = 0 .

It is then possihle to express the functions f"(.~z) and .Q"(x~) as linear combinations
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of the basis functions as follows:

P S 5fE1F

(30)

L'k' h b . f . . {<p~(-'"J} .-., 8" b' d fi d' hI -eWlse. t e aSls unctIOn paIrs ./,B _ (j - I. _..... ' ) can t.: e ne In t e
'1'1 (.\:,)

domain a < -'", < h. These functions also satisfy the governing eqn., (26). as well as initial
conditions which are analogous to (29). except that the initial conditions are evaluated at
-'", =: h. instead of at -'", = O. The functionsfB(x,) and.(/B(xJ can then be similarly expressed
as linear combinations of the basis functions in B.

Now. it needs to be determined whether some linear combination of the basis function
pairs can also satisfy the continuity conditions at x: = a. Let the velocities and traction
rates at x, = a. as evaluated in material A. be expressed in terms of sin (I)X I and cos (I)XI

components:

l"~(a) = ,.~, sin OJX I +I'~, Cll'; (I/\'I

Ji~, (a) = Ji'~" sin (I/X, +Ji~" cos (I/X 1

Ji~2.I(a) = Ji~!.I,sin (11.\'1 +Ji~: I. COSO/XI'

Ola)

(310)

(J Ie)

(3Id)

conditions. For example. in computing the basis
functions Y,(x,) which are defined by

Ooviously. oy changing the superscript A in (31) III B. analogous expressions for the
vclOl:ities and traction-rates at x, =: a. as evaluated in material B. are detined. Then. the
interface conditions that need to oe satislied reduce to the eight el\uations

To impose these conditions. one needs to express the ljuantities appearing in (32). in terms
of the basis function pairs. This can be done by combining (13). (21). (25) and (30). It is
crucial to note that the l\uantities in (32) depend onl! on the values of the oasis functions
and their derivatives at x, = a. Since there is no need to know anything about the basis
functions except at x, = a. we can integrate the differential equations in A all the way from
x: = () to x, = a. without extracting the solution at intermediate points; likewise. in B. we
can integrate from X2 = h directly to x, = a.

Now. we introduce the numerical part of the bifurcation cakulations. Instead of
integrating two fourth-order ordinary differential eljuations tl) determine each of the basis
function pairs and their derivatives at x, = a. we take the standard numerical route and
integrate eight first-order ordinary dil1"crential eljuations. This necessitates the introduction
of auxiliary functions which turn out to be convenient for implementing the continuity

{(P'~(x,)}function pair \ - . we introduce
IV, (x:)

.1'1 (xJ = (P'~ (x,) ; Y,(x:) =: (p'~(x:) ; YJ(x:l
.\

(x:) ; y~(x:) = (P'~ . (x:)= (PI

Y5(X,) = I~~(X,) ; yJ\":) = IV~ (x:); Yc(.\":l = IV~ (x:) : y,(x:) = IV~ . (x:) . (3)

With the initial conditions
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we integrate the functions JiX2) from X 2 = 0 to X2 = a. The contribution to. say. t1c from

h b . f . . {lp~(X2)} be d . d . h If' ht e aSls unctIOn pair "'~(x 2) can eternllne uSing t e va ues 0 Yj at x 2 = a. Wit out

further differentiation. Ofcourse. this contribution is scaled by the undetermined coefficient
p'(O).

To each of the terms in (32) with a superscript A. there are eight contributions from
the eight different initial conditions at X2 = O. each with its own undetermined coefficient;
to each of the terms in (32) with a superscript B. there are eight contributions from
the eight different initial conditions at X2 = b. This results in eight equations and 16 un
knowns. The remaining eight equations derive from the boundary conditions that we
imposed in Section 4 on the eigenmodes. Consider. for example. the anti-symmetric mode.

which corresponds to the conditions (27). In this case. the basis function pairs {=J~::;;}
(j = 2.4.6.8) do not contribute as their coefficient must always be zero; hence. there remain
only four undetermined coefficients in A. Similarly. there are two boundary conditions at
X2 = h. which when applied to both the sin WX I and cos (/)XI components. reduce the number
of undetermined coefficients in B to four.

All of the above boils down to setting up a system of eight homogeneous linear
equations. which we represent as

Mu=O (35)

where u is a vector of undetermined coefficients. Again. the first four columns of M
(corresponding to terms with a superscript A) are arrived at hy four separate integrations
of the system of eight first-order ordinary diffcrential equations in the interval 0 < .':2 < a.
each integration beginning with diffcrent initial conditions. The last four columns of M
(corresponding to terms with a superscript B) are arrived at by similar integrations in the
intervalll < X2 < h. The inner product of. say. the first row of M and the vector u represents
continuity of l' I. at the interface. and likewise for the other rows. If the dcterminant of M is
zero. then there exists a non-trivial vector ofcoefficients which satisfies all the homogeneous
continuity conditions at the interface.

The numcrical accuracy of this method is limited by the accuracy of the numerical
integrations of thc ordinary differential equations (which determine M). and by the evalu
ation of the detcrminant of M. With regard to the numerical integrations. we employed a
highly accurate. fourth order Runge-Kutta scheme with step-size control to maintain a
certain error level (Press e/ al.• 1986). In evaluating the determinant of M. certain care
must be exercised. It is convenient to express M in the following block form

(36)

and to usc the following property of determinants

(37)

where I I denotes the determinant of the enclosed matrix. and A- I is the inverse of A. Then.
one can keep track of the subdeterminants separately. as a function of the monotonically
increasing applied strain. The matrix M is first singular when one of the subdeterminants
is first zero. As a test of the accuracy of this method. it was applied to the previously
considered problem of anti-symmetric modes appearing during a homogeneous. frictionless
compression (Steif. 1987). Bifurcation strains were found to be essentially identical (answers
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to within seven significant figures were readily achieved). no doubt due to the accuracy
control of the Runge-Kutta integrating scheme.

In a numerical search for the strain at which 1:\'1 first vanishes. it is crucial to break
:\, into subdeterminants. The need for this is most easily appreciated when the present
method is applied to the case ofa homogeneous. frictionless compression. As was mentioned
earlier. the sin wx I and cos wx I components can be considered separately (only shearing
terms not present in this case cause them to be coupled) ; furthermore. the eigenfunctions
fIx J and g(x c) are ob\ iously identical. The matrix M that is set up is such that B = C = 0
and A = D. While the determinant of 1\1 certainly vanishes when the determinant of A
vanishes. a numerical sweep of increasing strains will not reveal a change of sign in IMI.
because A and 0 change sign at precisely the same strain. On the other hand. IAI does
change signs as the point of vanishing determinant is passed. A similar problem occurs even
when there is shearing and the matrix M is fully populated.

6. RESULTS

Bifurcation calculations were carried out in the manner described in the above sections
for a variety of material parameters. A qualitative sense of the influence of shear stresses
on layer bifurcation can be conveyed. however, without an exhaustive parametric study.
Accordingly. the results presented here are based on computations involving a single set of
material properties. We take each of the materials A and B to be described by power-law
stress··strain curves of the form

where k and N arc constants for a given material. In particular. the material constants were
chosen to be N" = O.IX9. Nil = 0.367. kn/k" = 9.0. These properties represent a symmetric
stainless-steel clad aluminum. Furthermore. we assume that the thickness ratio is
alh = (U033 (each of the stainless steel layers is one-tenth as thick as the aluminum core).
The central purpose of our computations is to contrast bifurcation strains for dillcrent
types of prebifurcation states: (i) a homogeneous, frictionless compression (studied pre
viously); (ii) a compression with a homogeneous shear stress; and (iii) the bimaterial
Prandtl-Orowan solution. For each of states (ii) and (iii), there is a shearing parameter
;,,,/1; for (ii) and m for (iii) -which can be adjusted to vary the amount of shear relative to
compression.

For state (ii), a compression with a homogeneous shear stress, we found the bifurcation
strains to be negligibly difrerent from those associated with state (i). at least for shearing
ratios up to ~',,/I; = I. Tht:refore, results for state (ii) arc not displayed. In Fig. 6 we contrast

0.6

0.5

0.4

432

0.3 +----r------,.-----.----.,
o

Fig. 6. Anti-symmetric mode bifurcation strain as a function of wavelength. comparing different
prcbifurcalion stales (m = 0.0 - frictionless compression: m = 0.1 - bimaterial Prandtl-Orowan

solution).



Frictional shear stresses in layered solids

0.6

0.5

£'0

0.4

0.3

0.2
0 2 3 4

lib

Fig. 7. Symmetric mode bifurcation strain as a function of wavelength. comparing different pre
bifurcation states (m = 0.0 - frictionless compression; m = 0.1 - bimaterial Prandtl-Orowan

solution).
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the bifurcation strains of states (i) and (iii). for the particular case of the anti-symmetric
eigenmode. As explained above. m = 0 corresponds precisely to state (i). the homogeneous.
frictionless compression. For the given set of parameters. the limiting value m* would be
roughly 0.1 S. It can be seen that this form of a shearing tends to diminish the bifurcation
strain modestly (the difference is roughly S%). at least in the range of wavelengths which
have the lowest bifurcation struins (wh '" 1.0). Results for the symmetric mode arc shown
in Fig. 7. where it can be seen that shearing s(qtlijiclIfIIly diminishes the bifurcation strain.

Variation of the anti-symmetric mode bifurcation strain with the shearing parameter
m is shown in Fig. 8 for a fixed wavelength wh = I. The modest variation can be contrasted
with what is observed in the case of the symmetric mode (Fig. 9). in which the shearing has
a substantial effect on the bifurcation strain. In fact. when there is substantial shearing
(accounted for via the bimaterial Prandtl-Orowan solution). the symmetric mode becomes
the preferred mode. This is in contrast to that which occurs in the frictionless compression.
when the anti-symmetric mode emerges at a slightly lower strain.

O,4S
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0.37
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0.00 0.Q3 0.06 0.09 0.12 a.1S

m

Fig. 8. Anti-symmetric mode bifurcation strain as a function of friction parameter m (wh = 1.0).
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Fig. 9. Syml11.:tric mod.: bifurcation sirain as a function of friction parameter m (UII> = 2.0).

7. SUMMARY AND CONCLUSIONS

During the rolling. or roll-bonding. of clad metals. layer thickness variations can arise
which eventually led to tiger banding (periodic fracture of the cladding). A bifurcation
model predil:ting the onset of layer thickness variations was put forth previously. in which
rolling was idealized as a homogeneous. frictionless compression. The present paper has
re-examined this highly idealized prebifurl:ation state. by employing two dilferent pre
hifurcation states. each having shear stresses that arc typical of rolling. Since the governing
dillcrential equation for inl:relllental deformations essentially defies analytic solution. a
suitahle nUlllericaltechnique was devised to obtain the bifurcation strains. A symmetrically
clad. three-layered solid was considered. and the possibility of both symmetric and anti
sYlllmetril: bifurcation modes (periodic layer thickness variations) was explored. We found
that the presenl:e of a homogeneous shear stress acting parallel to the layers. which could
n:llect rolls rotating at dillcrent speeds or an unsymmetric.II layup. had a negligible etlcct
on the predicted bifurcation strains. On the other hand. a prebifurcation state which
inwrporah:d shear stresses rel1ecting the friction at the rolls led to signitkantly lower
predictions of bifurl:ation strains. particularly in the case of symmetric modes.

Since our bimaterial Prandtl-Orowan solution-the prebifurcation state which reflects
mil friction apparently has such a strong ellcct. it would be worthwhile to explore the
n:asonableness of this solution further. It may be recalled that this solution. while correct
for a perlcetly plastic solid. is approximate for a work hardening one. Perhaps a numerical
solution (e.g. finite element) for the stress distribution in strain-hardening layers subjected
to pl;lne strain compression could indicate the degree of approximation in the bimaterial
Prandtl Orowan solution. In addition. it may be necessary to explore the sensitivity of our
predictions to the metal platen boundary condition. We assumed that there was zero
increlllent in shear stress associated with the eigenmode. It is more likely, however. that the
platens put up some resistance to inl:remental relative motion. though they do not eliminate
it. Some means of incorporating this cffect should be made in the future. Ofcourse. it would
he highly desirable to shed light on these issues by performing plane strain compression
tests on clad metals using platens with different degrees of lubrication.

Connecting the bifurcation analysis to rolling is necessarily suspect for an additional
reason. Strictly speaking. the bifurcation analysis is based on the assumption that the
prebifurcation state prevails over the infinite domain - 00 < XI < CfJ. One might argue that
the analysis is also relevant to a finite body. provided the appropriate lineal dimension of
the body. or the length in the Xl-direction over which the prebifurcation state prevails, is
at least several times the wavelengths of the predicted modes. Unfortunately. the stresses
of our bimatcrial Prandtl-Orowan solution at best resemble the stresses induced during
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rolling (as Orowan would suggest) only over some portion near the entrance to the roll gap
and over some portion near the exit. Clearly. further steps are required before the bifurcation
analysis can account for the very complex stress states that are associated with rolling.
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